compute_dist¶
- 
hyppo.tools.compute_dist(x, y, metric='euclidean', workers=1, **kwargs)¶
- Distance matrices for the inputs. - Parameters
- x,y ( - ndarray) -- Input data matrices.- xand- ymust have the same number of samples. That is, the shapes must be- (n, p)and- (n, q)where n is the number of samples and p and q are the number of dimensions. Alternatively,- xand- ycan be distance matrices, where the shapes must both be- (n, n).
- metric ( - str,- callable, or- None, default:- "euclidean") -- A function that computes the distance among the samples within each data matrix. Valid strings for- metricare, as defined in- sklearn.metrics.pairwise_distances,- From scikit-learn: [ - "euclidean",- "cityblock",- "cosine",- "l1",- "l2",- "manhattan"] See the documentation for- scipy.spatial.distancefor details on these metrics.
- From scipy.spatial.distance: [ - "braycurtis",- "canberra",- "chebyshev",- "correlation",- "dice",- "hamming",- "jaccard",- "kulsinski",- "mahalanobis",- "minkowski",- "rogerstanimoto",- "russellrao",- "seuclidean",- "sokalmichener",- "sokalsneath",- "sqeuclidean",- "yule"] See the documentation for- scipy.spatial.distancefor details on these metrics.
 - Set to - Noneor- "precomputed"if- xand- yare already distance matrices. To call a custom function, either create the distance matrix before-hand or create a function of the form- metric(x, **kwargs)where- xis the data matrix for which pairwise distances are calculated and- **kwargsare extra arguements to send to your custom function.
- workers ( - int, default:- 1) -- The number of cores to parallelize the p-value computation over. Supply- -1to use all cores available to the Process.
- **kwargs -- Arbitrary keyword arguments provided to - sklearn.metrics.pairwise_distancesor a custom distance function.
 
- Returns
- distx, disty ( - ndarray) -- Distance matrices based on the metric provided by the user.