ellipse¶
- 
hyppo.tools.ellipse(n, p, noise=False, low=- 1, high=1)¶
- Ellipse simulation. - Ellipse \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)^p\), \(\epsilon \sim \mathcal{N}(0, I_p)\), \(r = 5\), \[\begin{split}X_{|d|} &= r \left( \sin(\pi U_{|d+1|}) \prod_{j=1}^d \cos(\pi U_{|j|}) + 0.4 \epsilon_{|d|} \right)\ \mathrm{for}\ d = 1, ..., p-1 \\ X_{|p|} &= r \left( \prod_{j=1}^p \cos(\pi U_{|j|}) + 0.4 \epsilon_{|p|} \right) \\ Y_{|d|} &= \sin(\pi U_{|1|})\end{split}\]- Parameters
- n ( - int) -- The number of samples desired by the simulation (>= 5).
- p ( - int) -- The number of dimensions desired by the simulation (>= 1).
- noise ( - bool, default:- False) -- Whether or not to include noise in the simulation.
- low ( - float, default:- -1) -- The lower limit of the uniform distribution simulated from.
- high ( - float, default:- 1) -- The upper limit of the uniform distribution simulated from.
 
- Returns
- x,y ( - ndarray) -- Simulated data matrices.- x` and ``yhave shapes- (n, p)and- (n, p)where n is the number of samples and p is the number of dimensions.