multimodal_independence¶
- 
hyppo.tools.multimodal_independence(n, p, prob=0.5, sep1=3, sep2=2)¶
- Multimodal Independence data. - Multimodal Independence \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{N}(0, I_p)\), \(V \sim \mathcal{N}(0, I_p)\), \(U^\prime \sim \mathcal{B}(0.5)^p\), \(V^\prime \sim \mathcal{B}(0.5)^p\), \[\begin{split}X &= \frac{U}{3} + 2 U^\prime - 1 \\ Y &= \frac{V}{3} + 2 V^\prime - 1\end{split}\]- Parameters
- n ( - int) -- The number of samples desired by the simulation (>= 5).
- p ( - int) -- The number of dimensions desired by the simulation (>= 1).
- prob ( - float, default:- 0.5) -- The probability of the bernoulli distribution simulated from.
- sep1, sep2 ( - float, default:- 3,- 2) -- The separation between clusters of normally distributed data.
 
- Returns
- x,y ( - ndarray) -- Simulated data matrices.- x` and ``yhave shapes- (n, p)and- (n, p)where n is the number of samples and p is the number of dimensions.