square¶
- 
hyppo.tools.square(n, p, noise=False, low=- 1, high=1)¶
- Square simulation. - Square \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = -\frac{\pi}{8}\), \[\begin{split}X_{|d|} &= U \cos(\theta) + V \sin(\theta) + 0.05 p \epsilon_{|d|} \ \mathrm{for}\ d = 1, ..., p \\ Y_{|d|} &= -U \sin(\theta) + V \cos(\theta)\end{split}\]- Parameters
- n ( - int) -- The number of samples desired by the simulation (>= 5).
- p ( - int) -- The number of dimensions desired by the simulation (>= 1).
- noise ( - bool, default:- False) -- Whether or not to include noise in the simulation.
- low ( - float, default:- -1) -- The lower limit of the uniform distribution simulated from.
- high ( - float, default:- 1) -- The upper limit of the uniform distribution simulated from.
 
- Returns
- x,y ( - ndarray) -- Simulated data matrices.- x` and ``yhave shapes- (n, p)and- (n, p)where n is the number of samples and p is the number of dimensions.